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Abstract. Typical laboratory optical systems use commercially off-the-shelf components
in which emphasis is oriented toward ease of assembly and a wide range of adjustability.
However, these mounts often require individual alignments that, when each degree of adjust-
ability is cumulated in a complex optical system, can be inefficient and time consuming.
Furthermore, most of these optomechanical mounts lack the mechanical robustness required
to maintain operational performances out of the laboratory environment. An optomechanical
assembly method based on passively aligning design features is proposed to simplify breadboard
level optical systems, to improve alignment accuracy and maintaining operational pointing sta-
bility. Given the recent improvements in lens passive centering techniques, it seemed worth
exploring methods to reduce alignment time and improve the mechanical robustness of labo-
ratory setups. Recent studies show that a typical optical lens centering of <1 arc minwith respect
to its mount can be achieved using patented auto centering and edge contact mounting technol-
ogies. To achieve similar position accuracy between multiple lenses on a portable breadboard,
lens mounts should be designed and built with proper reference surfaces and a system should
easily reference one mount with respect to the other. The use of reference spheres and dedicated
optomechanical mounts is employed to leverage the standard threaded holes of laboratory bread-
boards and achieve precise lens mount positioning. A series of optomechanical mounts incor-
porating these techniques are therefore tested. Position accuracy and repeatability are measured
mechanically with a coordinate measuring machine and optically with the active monitoring of a
laser beam centroid position. Measured position accuracy at the optomechanical mount level is
<50 μm with a repeatability of less than 5 μm per interface. The optomechanical mounts robust-
ness is tested within typical storage temperature range of −46°C to 63°C and at vibrations levels
exceeding typical shipping conditions. Measured optical pointing stability of a simple optical
system after environmental testing was found to be under 25 μm. This method should be a prom-
ising solution to bridge the design technological gap between the early prototyping and the pro-
duction phases. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.OE.60.5.051213]

Keywords: lens mounting; centering; alignment; edge mounting; QuickCTR-edge; QuickCTR;
lens barrel; optomechanics; auto-centering; self-centering; optomechanical mount; optical
mount; optomechanical stability.

Paper 20201439SS received Dec. 8, 2020; accepted for publication Mar. 9, 2021; published
online Mar. 24, 2021.

1 Introduction

In the industry, the need in terms of optical component positioning accuracy may vary a lot from
one application to the other. Meanwhile, according to Institut National d'Optique (INO)’s expe-
rience, most industrial optical systems fit within�50 μm of lens centration. Nonetheless, almost
all new optical systems require demonstration work done in the laboratory environment. The
alignment of each lens or optical element of an optical system is often tedious and sometimes
a difficult task that may last many hours up to multiple days of work. Moreover, it requires a lot
of engineering work to achieve the state where the same optical design can be built to meet the
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mechanical stability required to withstand shipping conditions without losing its initial align-
ment settings, thereafter called as mechanical robustness.

While presently available breadboards and optomechanical mounts on the market are well
designed to achieve maximum flexibility and ease of use, they all lack the same features: built-in
precise positioning, position repeatability, and mechanical robustness. Typical commercially
available lens and mirror mounts, such as optical posts, lens tubes, and cage systems, are made
to be positioned with unprecise laboratory fixtures as they do not have external mechanical refer-
ences. Therefore, breadboard and table top optomechanical mounts usually rely on visual align-
ment rather than mechanical referencing. Initial position accuracy of a lens mount that is visually
aligned is not well described in literature. However, it could be reasonably assumed that it is
possible to center at resolution of 1/20’th of the clear aperture of the optomechanical mount
without any special tooling. This corresponds to about �1 mm in translation ðX; Y; ZÞ for a
25.4 mm diameter lens mount. Using a similar approximation for the angular position of the
mount, a �2 deg in rotation along the post axis (yaw) can be estimated due to the visual nature
of the positioning made in the laboratory. Depending on the experiment sensitivity to misalign-
ment, this initial optomechanical mount positioning is then refined through an iterative optimi-
zation process that requires the use of different techniques, tools such as targets, pin holes,
wavefront sensors, point source microscopes, and the use of multiple linear translation and rota-
tion stages to overcome the error buildup. By experience, after a first optimization process, it is
not uncommon to find single optical elements decentered by 0.5 mm and tilted by 0.5 deg.
Identifying misplaced optical elements and fine tuning their position to correct these last hun-
dreds of microns can be time consuming. In addition, the lens position in its cell relies more on
axial play between the cell thread and the lens outer diameter. Consequently, even after lens
position optimization, if a lens must be removed for cleaning, inspection, or any other reason,
there is a high probability that the lens will not return to its original position after reassembly. It
implies that rework will be required on the optical system when a lens is removed.

It is also worth noting that most commercially available translation and angular adjustable
stages are not designed to survive mechanical shocks and vibration that would be encountered in
commercial shipping conditions. These adjustable stages are usually heavy, fragile, and expen-
sive; therefore, it is not practical to use them in optical assemblies destined to be shipped. With
the ever-increasing speed of product development to achieve fast time-to-market goals, there is a
need for a prototyping method that can reduce alignment time using accurate positioning, high
position repeatability while being mechanically robust enough to be used as a product and to
survive shipping constraints.

A line of optomechanical mounts and breadboards was developed specifically for that pur-
pose. It is designed to ease optical alignment by passively centering lenses and mirrors from 12.7
to 50.8 mm in diameter. High position and angular accuracies are expected without sacrificing
robustness.

2 Operation Principle

A trivial method used for decades to achieve repeatable mount referencing is the use of dedicated
locating pins on custom-designed support structures or benches. It is generally accepted that
abutting a lens mount on locating pin/bushing assembly can typically achieve 10 to 25 μm
in position repeatability.1 However, adding reference pins on breadboards is not practical, as
it requires implementing a second matrix of holes specifically for the pins. Since typical bread-
boards already include an evenly spaced grid of mounting threaded holes, it is tempting to lev-
erage existing holes into proper referencing features. Usually, conventional threaded holes are
not considered reliable interfaces for precision positioning. However, it is possible to overcome
this issue by adding a slightly oversized entrance cone (or chamfer) at the border of the threaded
holes on the breadboard or optical table. It is then possible to use this conical interface as a
locating surface for precision reference balls. A sphere inserted in a cone locks the reference
ball’s three degrees of freedom (DOF) in translation, defining a single point in space for each
mounting hole. The combination of two or three reference points can then be used to accurately
locate lens or mirror mounts anywhere on the breadboard. The availability of known reference
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points at close intervals opens the possibility to assemble an optical system mostly like building
blocks: Inserting the optical element, placing the reference spheres where needed, abutting the
lens mount on the spheres, locking the mount in position, removing the spheres, and repeating
for the following one. Figures 1 and 2 show the ball referencing arrangement in a hole and the
lens mount typical ball abutment arrangement, respectively.

The optomechanical mount six-DOF are defined in the coordinate system of Fig. 3. The
breadboard mounting plane allows to fix three-DOF: vertical translation (Z), pitch, and roll rota-
tions. Then the three other DOF are to be defined with the spheres. The first one is the yaw
rotation or rotation about a vertical (Z) axis. The second and third are the breadboard planar

Fig. 1 Sphere reference tool in positioning cone principle.

Fig. 2 Three-point contact positioning principle.
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translations where axial refers to the direction parallel to the optical axis (X) and lateral refer to
the direction perpendicular to the optical axis (Y).

The developed line of breadboard is based on M4 screws and 12.5-mm hole spacing to allow
maximum flexibility in the lens optical layout. As shown in Fig. 1, the reference ball tool con-
struction is essentially the assembly of a small M4 thumb screw containing a captive high pre-
cision ball. The M4 thumb screw insertion tool serves the dual purpose of locking the reference
ball in position against the breadboard’s reference cones and allows simpler ball manipulation in
a lab environment. The 6.35-mm diameter ball through hole fit is loose on the insertion tool to
allow the ball to freely locate itself in the breadboard reference cone. At the insertion, the ball
must be free to move onto the shaft to obtain the bests results. Otherwise, the ball position would
be driven by the threaded hole, which is not as precise as the reference cone. Even a small,
threaded hole perpendicularity error can prevent the ball to sit correctly in the precise reference
cone thus reducing the ball position accuracy and repeatability.

Some of the advantages of using balls instead of pins to position lens mounts are reduced
sensitivity to hole and lower chamfer perpendicularity errors, in addition to the ease of removal
after the mount is locked in place. Angle errors for holes equally affects the pin and the reference
sphere center’s position assuming contact height of the sphere and pin height are the same. The
sphere’s contact height with respect to the breadboards surface can be described as

EQ-TARGET;temp:intralink-;e001;116;290hSCH ¼ ∅Sphere

2
· sinðθConeÞ −

�
∅Cone − ∅Sphere · cosðθConeÞ

2

�
· cotðθConeÞ; (1)

where ∅Sphere is the reference sphere diameter, θCone is the entry cone half angle, and ∅Cone is
the entry cone diameter on the breadboard top. The lateral shift of the sphere’s center, or position
error, due to a tilted entry hole is

EQ-TARGET;temp:intralink-;e002;116;208σCT ¼ hSCH · tanðθTiltÞ; (2)

where σCT is the sphere center position error due to the pin tilt angle, ∅Sphere is the reference
sphere diameter, θCone is the entry cone half angle, ∅Cone is the entry cone diameter on the
breadboard top, and θTilt is the cone or threaded hole angular tilt error. However, for the sphere,
the resulting error will be limited to its center translation σCT and the contact point on the mount
will be mostly unchanged in all possible contact orientations. In comparison, abutting an opto-
mechanical mount on a tilted pin from different directions provides contact points at different
heights on an optomechanical mount, thus increasing the total position uncertainty. This abutting
position difference due to a tilted pin can be described as

Fig. 3 Optomechanical mount coordinate system definition.
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EQ-TARGET;temp:intralink-;e003;116;567σTilt ¼ ΔHContact · tanðθTiltÞ; (3)

where σTilt is the position error due to the pin tilt angle,ΔHContact is the contact height difference
on the optomechanical mount when abutting from different directions, and θTilt is the pin angle.
ΔHContact is driven by the mount geometry but in the worst-case scenario it would be equal to the
pin’s height extruding of the breadboard. As mentioned, for the case on a tilted pin, the position
uncertainty of a mount abutting on a tilted pin is the sum of σCT and σTilt. Figure 4 shows the
optomechanical mount abutting position difference for a tilted pin compared to a ball when
abutting from two different directions. Assuming θTilt ¼ 0.25 deg and hSCH ≅ ΔHContact ¼
3 mm then from equations above we find σCT ¼ σTilt ¼ 13 μm. Therefore, in this example, the
position uncertainty of a mount abutting on the tilted pin would be 26 μm, essentially the double
of the error expected for a sphere in a tilted cone with the same tilt error.

According to Machinery’s Handbook,2 drilled holes accuracy is influenced by many factors
such as accuracy of the drill point, the size of the drill, the work material, the length of the drill
and the runout of the spindle and chuck assembly, and the rigidity of the machine tool to name a
few. In this case, entry cone geometry can accommodate shorter and wider tools than threaded or
pin holes of similar size, leading to stiffer tools and better position accuracy than tools required
for deeper pin holes. Moreover, if the pins are removable, then some mechanical play must be
accounted for between the pin and the hole to allow easy insertion/removal, which further
increases the position uncertainty. The sum of these differences explains why spheres are more
attractive for precise positioning than pins.

The position accuracy of an optical element does not depend only on the optomechanical
mount position. The optical element position in its mount also needs to be controlled carefully to
achieve accurate positioning in a multi-element system. The position error of a lens with respect
to its optomechanical mount can greatly vary depending on the lens geometry. As discussed by
Lamontagne et al.,3 for self-centering to work the clamping angle criteria must be met, however,
most long radius of curvature lenses [long focal lengths (FLs)] and negative (concave) lenses
were still difficult to center as they often did not meet the auto-centering criteria or required
custom-designed threaded rings and lens seats. With the integration of the patented edge contact
mounting technique4 in the line of optomechanical mounts, it is possible to center most lenses
without the need of custom-design threaded rings. The use of this technique, called QuickCTR-
edge mounting, allows a good lens position and tilt accuracy. For example, results from
Lamontagne et al.1 in Table 1 display measured lens position accuracy with respect to cell rim
using edge contact mounting.

To take advantage of these techniques, it was necessary to rethink the way the optomechan-
ical mounts are constructed and used to maximize the position accuracy. Achieving high position
accuracy “passively” can reduce the alignment process time by reducing the total number adjust-
able mounts required. Reducing the number of adjustable mounts can inevitably lower the total
system weight on the breadboard and will also improve the behavior of the optical system when
exposed to various vibrations levels.

It is understood that cases exist where optical components, opto-electronic components, or
other need to be inserted in the optical system but do not have well defined (precise) reference

Fig. 4 Illustration of a hole tilting effect on position accuracy (angle magnified for visualization).
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features for accurate positioning, but yet require to be accurately positioned in the optical system
(often at the beginning or the end of an optical branch of the system). For this purpose, a set of
adjustable mounts compatible with the line of optomechanical mounts were designed. These
mounts were designed with the same mechanical robustness philosophy and includes locking
mechanisms suitable to survive similar environmental conditions. Once installed and aligned a
first time, the adjustable mount provides the position accuracy features to the unprecise com-
ponent to match with the line of optomechanical mounts.

Now, with the lens edge centering method combined with adequate mount fabrication tol-
erance controls and the addition of patent pending ball referencing features on the breadboards,5

it is expected to achieve improved optical element position accuracies under 100 μm at the
optomechanical mount level.

2.1 Position Accuracy Aspects

In the development of the line of optomechanical mounts, one important aspect of the design
focused on what could be the achievable absolute and relative position accuracies. When
assembled in a mount, the lens maximum position and tilt errors with respect to a theoretical
optical path is the sum of all components (optical and optomechanical) fabrication errors and
components interfacing errors. They are defined as position error contributors:

EQ-TARGET;temp:intralink-;e004;116;400σmax ¼
Xn
i¼1

σi; (4)

where σmax is the sum of individual position error contributors σi from the lens up to the system
global coordinate system.

Table 2 displays a non-exhaustive list of possible errors sources (or contributors) to the lens
position error and highlight typical error ranges expected for commercial grade components.

However, in practice, all forms of errors rarely occur in the same direction and at maximum
value unless it is a systematic error. Therefore, a statistical approach often gives a better evalu-
ation of the actual error stack-up. For this reason, the root-sum-squared method is often used:

EQ-TARGET;temp:intralink-;e005;116;267σRSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

σ2i ;

s
(5)

where σRSS is the square root of the sum of squared individual position error contributors σi from
the lens up to the system global coordinate system.

The X, Y and Z position accuracy of an optomechanical mount can be directly measured with
respect to a given reference system. The total position accuracy in a plane or in volume is

EQ-TARGET;temp:intralink-;e006;116;168Acc2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AccX2 þ AccY2

q
; (6)

EQ-TARGET;temp:intralink-;e007;116;116Acc3D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AccX2 þ AccY2 þ AccZ2

q
; (7)

where Acc2D and Acc3D are the scalar planar and volumetric position accuracies, respectively,
and AccX , AccY , and AccZ are the components of position accuracy vector in mutually
perpendicular axis. As shown in Fig. 5, the lens mounts angular errors are function of the

Table 1 Centering measurements of a lens surface in contact with a threaded ring using edge
contact mounting.

# of measurements Min Max Mean Std deviation

75 0.45 μm 18.62 μm 7.19 μm 4.72 μm

94 0.04 arc min 2.49 arc min 0.81 arc min 0.55 arc min
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distance between the ball contact points in the horizontal plane and depends on the lens mount
base width along the vertical and lateral plane. These angular errors also generate translations of
the optical element that adds to the error stack up of to the reference sphere direct contact point
position error and can be described as

EQ-TARGET;temp:intralink-;e008;116;379θH ¼ tan−1
�
Δz
WB

�
; (8)

EQ-TARGET;temp:intralink-;e009;116;322θV ¼ tan−1
�
Δε⊥
LB

�
; (9)

EQ-TARGET;temp:intralink-;e010;116;286θL ¼ tan−1
�
Δε⊥
WB

�
; (10)

Table 2 Typical main contributors to optical element position error.

Error form Error range Comment

Manufacturing errors
of optical element

≤50 μm Edge thickness difference of commercial-grade lenses6,7

≤100 μm Diameter of commercial-grade lenses6,7

≤150 μm Center thickness of commercial-grade lenses6,7

Optical element residual
position error in its mount

≤350 μm Assuming a lens not self-centered, completely offset with
a lens to barrel play of 350 μm

Manufacturing errors of the
lens/mirror seat position with
respect to the mount base or
abutment contact surface

≤25 μm ISO 286 IT7 tolerance grade up to 50 mm feature size8

Ball diameter error
(one ball versus the other)

≤6 μm ISO 286 IT5 tolerance grade up to 10 mm feature size8

Breadboard holes conical
interface position error with
respect to the others

≤63 μm ISO 286 IT7 tolerance grade up to 500-mm feature size8

If applicable, manufacturing
errors of any additional parts
such as lens tube or mechanical
components located between the
lens and the mount

— —

Fig. 5 Lens mount angular error definition.
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EQ-TARGET;temp:intralink-;e011;116;723δA ¼ WB

2
sin θH þ HB

2
sin θV; (11)

EQ-TARGET;temp:intralink-;e012;116;691δL ¼ HB sin θL þ σL3; (12)

EQ-TARGET;temp:intralink-;e013;116;669δV ¼ WB

2
sin θL; (13)

where

• θH is the mount horizontal tilt angle (yaw angle).
• Δz is the reference balls relative position difference in the normal direction to the abut-

ting plane.
• WB is the distance between the reference the ball contact points in the abutting plane.
• θV is the mount vertical tilt angle (pitch angle).
• Δε⊥ is the height difference between the front and the back of the mount at mounting

interface, this error generates a perpendicularity error of the mount.
• LB is the optomechanical mount thickness.
• θL is the mount horizontal tilt angle (roll angle).
• HB is the optomechanical mount nominal axis height.
• δA is the lens position error in the axis direction, resulting from abutting errors and angular

deviations.
• δL is the lens translation in the perpendicular direction to the optical axis.
• σL3 is the lateral abutting error of the optomechanical mount with the 3rd sphere in the

lateral axis.
• δV is the lens translation in the perpendicular direction to the breadboard plane, resulting

from angular deviation.

Small rotations of the lens about its axis (θL) can be neglected as first-hand approximation for
lenses with symmetry of revolution. These roll angle deviations of the mount due to flatness
errors, or surface irregularities at the breadboard and mount interface would be measured as
a lateral displacement of the optical element (Y).

Therefore, it is possible to extract the different position and angular errors from simple three-
dimensional (3D) position sampling on an optomechanical mount. Then, for a given optome-
chanical mount with known lens seat position error and using Eqs. (8)–(13), it is possible to
estimate the optical element position in space.

3 Mechanical Robustness Considerations

The position accuracy and repeatability can be valuable features for optomechanical mounts.
However, to be able to use these optomechanical mounts and breadboards outside of the classical
laboratory environment, it is safe to assume that vibrations levels are likely to be higher. The
design parameters available to control and improve the vibration stability at the optomechanical
mount level, are the mount stiffness (k) and mass (M), in other words, its stiffness to weight ratio.
The optomechanical mount response to external vibration depends on the part’s intrinsic natural
resonance frequency (fn) as shown in Eq. (14).

EQ-TARGET;temp:intralink-;e014;116;172fn ¼
1

2π

ffiffiffiffiffi
k

M

r
: (14)

The mount geometry is determinant in the control of this vibration response. This can be
demonstrated by simplifying the optomechanical mount to a rectangular cantilever beam
extruding from the breadboard surface and assuming it is rigidly fixed on it, the equation
of fn becomes
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EQ-TARGET;temp:intralink-;e015;116;735fn ≅
1

4π

ffiffiffiffiffiffiffiffiffiffi
Ebh3

ML3

r
; (15)

where E is the mount Youngs modulus, b is the mount width perpendicular to the excitation
axis and beam axis, h is the mount thickness in the direction of the excitation axis (assuming
the excitation axis is oriented in the mount’s weakest orientation to obtain b ≥ h), M is the
mount and lens assembly mass, and L is the mount height (cantilever arm length). An opto-
mechanical mount exposed to vibration excitation at or near its resonance frequency will
amplify the amplitude of movement and acceleration to a point where holding forces to main-
tain an optical element could be exceeded. This can lead to optical system alignment loss.
Therefore, designing the optomechanical mounts to have a high natural frequency is desirable
to reduce or prevent misalignment to occur in transport.

Commercial transport random vibration spectrum can range from 0 to 2000 Hz according the
minimum integrity exposure of department of defence test method standard (MIL-STD-810H).9

Therefore, the design of each element of the line of optomechanical mount included finite
element analysis to optimize mount geometry to obtain high natural frequencies. The rationale
behind the selection of this specific standard is, since these optomechanical mount have been
designed to be used for several types of industrial applications, the minimum integrity exposure
englobes most of worldwide shipping transportation vehicles.

4 Experimental Validation

The position accuracy and the position repeatability have two different implications when it
comes to practical use. The position accuracy refers to the possibility to expect or predict where
any optical element will be in space with respect to a theoretical (or perfect) layout. The repeat-
ability refers to the ability to fall back in the same position for a given layout if an element needs
to be removed and replaced.

Different experiments were performed to assess the achievable performance of the line of
optomechanical mounts and breadboards:

1. Experiment 1: Position accuracy and repeatability measurement of multiple breadboards
with reference spheres.

2. Experiment 2: Optomechanical mount position accuracy and repeatability measurement.
3. Experiment 3: Optical repeatability test.
4. Experiment 4: Environmental stability testing (temperature and vibration).

Material and environment:
For the experiments involving dimension probing, the experiments are performed in a

clean room environment complying to ISO N class 7 standard10 with a stable temperature of
21°C� 1°C. Optical and environmental testing is performed under normal laboratory conditions
(ISO N class 8 to 9). Each experiment was performed over a short period of time extending from
a few hours to less than a week. Environmental conditions in the laboratories during these experi-
ments were stable. The components tested in the experiments are all from the line of breadboards
and mounts named QuickPOZ,11 which include the position reference chamfers on each bread-
board mounting hole and edge mount centering technology. Throughout the test campaign the
components used were:

• Five different 200 × 400 × 12.7 mm3 breadboards,
• Six reference balls tools,
• Five fixed mirror mounts (25.4-mm diameter), height 31.8 mm,
• One adjustable mirror mount (25.4-mm diameter), height 31.8 mm,
• One lens mount (25.4-mm diameter), height 31.8 mm,
• 1 threaded mount (25.4-mm diameter), height 31.8 mm,
• 1 threaded lens tube (25.4-mm diameter), 12.7-mm length,
• Two XY adjustable mounts (25.4-mm diameter), height 25.4 mm,
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• Two axial adjustment stages,
• Three edge centering rings for 25.4-mm diameter lenses.

Included optical components:

a. Four different 25.4-mm diameter lenses:

• About 50-mm FL doublet lens 47-637,
• 250-mm FL 63-845,
• 50-mm FL 49-356,
• 100-mm FL 47-641,

b. Five different 25.4 mm diameter flat mirrors BB1-E02.

Other optical hardware used included:

• 1 Sub miniature A fiber adapter,
• 1 UNF 1.035-40 to C-Mount thread adapter,
• 1 pigtailed monomode fiber laser source, 4-μm core, numerical aperture 0.12,
• 1 camera 1280 × 1024 pixels, 5.3-μm pixel pitch.

4.1 Reference Spheres Position Accuracy and Repeatability Experiment

To assess the position accuracy of the breadboard’s conical reference feature in combination with
the reference spheres, experiment 1 is divided in two parts:

i. Experiment 1a: Position accuracy measurement of multiple breadboards with refer-
ence balls.

ii. Experiment 1b: Reference ball assembly position repeatability tests.

The reference ball position accuracy and repeatability test over the breadboard
surface consists in placing different reference balls in multiple positions on the breadboard,
repeating the ball insertion and removal multiple times for each position, measuring the ball
center position each time. The probing is executed with a Mitutoyo model BRT-710
Coordinate Measuring Machine (CMM) and the data acquisition and post-processing is
done with Polyworks Metrology Suite software.12 The CMM is a precision position probing
arm mounted on a three-axis motorized gantry. CMMs are metrology machines primarily used
for quality control to verify dimensional conformance of fabricated goods. The end probe
of the CMM arm is a calibrated sphere mounted on a force feedback extension rod. The
CMM’s probe makes small controlled contacts with the target component to measure the posi-
tion coordinates at each contact point. By contacting multiple points on the reference sphere
mounted in the breadboard’s conical interface, it is possible to determine the reference sphere’s
center in 3D.

Method:
The breadboard is placed and secured in position on the CMM’s granite table. The first

sphere inserted on the breadboard is probed and its center serves as the coordinate system origin.
Two other spheres are inserted on the breadboard and their centers serves as reference points to
define the experiment reference axis directions. Using Polyworks software and a 3D computer-
aided design (CAD) model of the experiment as a nominal reference, a local coordinate system is
defined with the probed reference points on the breadboard and a step by step probing sequence
is defined. Figure 6 shows the general reference ball layout and axis definition for the experiment
1. At each position, the operator manually places the reference sphere on the predetermined
position on breadboard and requests the CMM to probe the reference sphere’s position for deter-
mining the relative position error. After the probing is completed, the sphere is removed, and
the process is repeated for the next positions on the breadboard.

Experiment 1a: The tested breadboard dimensions are 200 × 400 × 12.7 mm3 with M4
threaded holes and positioning chamfers at a 12.5-mm spacing. For each reference ball insertion,
the sphere’s center position is determined by the average calculation of 10 probed points around
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its external diameter. The position accuracy (AccPðx; y; zÞ) and orientation accuracy
(AccOðθV; θH; θLÞ) of the ball in a 3D space is evaluated as

EQ-TARGET;temp:intralink-;e016;116;486AccPðx; y; zÞ ¼ PTHðx; y; zÞ − PMðx; y; zÞ; (16)

EQ-TARGET;temp:intralink-;e017;116;443AccOðθV; θH; θLÞ ¼ OTHðθV; θH; θLÞ −OMðθV; θH; θLÞ; (17)

where PTHðx; y; zÞ is the theoretical position of the ball defined in the CAD model and
PMðx; y; zÞ is the measured position, and OTHðθV; θH; θLÞ is the theoretical orientation of the
ball defined in the CAD model andOMðθV; θH; θLÞ is the measured orientation. However, in this
experiment the three rotations of the sphere are not useful due its symmetry of revolution and the
height (Z axis) is not useful in the context of the breadboard positioning features. This leaves
only the X and Y coordinates in the experiment 1 AccPðx; y; zÞ. The standard deviation is com-
puted over the total accuracy measurements made along each axis.

Experiment 1b: The reference ball assembly repeatability is evaluated by measuring an initial
position and by comparing it with multiple assembly-removal operations on the same breadboard
grid position. The process is then repeated at multiple locations on the breadboard. The position
repeatability ðRPiðx; y; z; θV; θH; θLÞ) and angular repeatability (ARiðθV; θH; θLÞ) are

EQ-TARGET;temp:intralink-;e018;116;301RPiðx; y; zÞ ¼ P0ðx; y; zÞ − Pjðx; y; zÞ; (18)

EQ-TARGET;temp:intralink-;e019;116;257ARiðθV; θH; θLÞ ¼ O0ðθV; θH; θLÞ −OjðθV; θH; θLÞ; (19)

where P0ðx; y; zÞ andO0ðθV; θH; θLÞ are the initial measured position and angles respectively for
a given tested position (i), and Pjðx; y; zÞ and OjðθV; θH; θLÞ are the repeated position and rota-
tions measurement (1 to j) for its given position. Once again, in this case only the X and Y values
are useful for the experiment thus only those values will be monitored.

4.2 Optomechanical Mount Position Accuracy and Repeatability Experiment

Experiment 2: To assess the position accuracy of the optomechanical mount, the experiment is
also divided in two parts:

i. Experiment 2a: Optomechanical mount position accuracy measurement
ii. Experiment 2b: Optomechanical mount positioning repeatability measurement

The optomechanical mount accuracy and repeatability tests performed with the same prin-
ciple than in experiment 1, equations (16 to 19), but measurements are made in three axes
ðX; Y; ZÞ instead of two and two rotations ðθV; θHÞ. The optomechanical mount is inserted and

Fig. 6 Experiment 1 reference spheres position accuracy and repeatability experiment layout.
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removed multiple times in each position after the three reference balls are positioned properly for
a specific lens mount position. For each mount insertion, the mount is installed on the breadboard
and lightly pressed by hand against the three reference spheres and fixed in place with two M4
screws. The X, Y, and Z positions are measured with the CMM, by probing the mount at seven
distinct location for each three sides (see Figure 7). The associated tip and tilt errors ðθV; θHÞ are
extracted from the face probing of the mount. The deviation in Z and X axis for each mount is
retrieved from the top and side probing of the optomechanical mount respectively. The X axis
deviation is computed at the lens center’s height from the plane formed by the four probing
points on the mount face plan. For each optomechanical mount measurement, the probing is
done through a programmed and automated pattern to ensure measurement consistency.

4.3 Optical Repeatability Experiment

A similar validation can be done optically by inserting and removing optical elements of a simple
optical assembly one at the time. In this experiment, labeled Experiment 3, a fiber laser source is
collimated through a 50-mm FL lens and sent through two folding mirrors to a 250-mm FL lens
and then imaged on a 5.3-μm pixel pitch camera, as shown in Figure 8. The imaging lens and
camera combination can detect small lens and mirror movements (decenters and tilts) by

Fig. 7 Experiment 2 optomechanical mount test layout and probing scheme.

Fig. 8 Experiment 3 optical repeatability test.
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measuring the beam centroid position in pixels. For a given initial beam position on the camera,
each optomechanical mount is removed and reassembled using the reference balls. The beam
centroid position is logged each time.

The lens optical repeatability test is divided by type of optomechanical mounts (lens
mount, mirror mount, and lens tubes) and by interfaces (reference spheres, and edge
centering) to measure the individual and combined effect of these interfaces on the position
repeatability:

Lens mount 1 (L1):

• L1.1: Removing the optomechanical mount only and placing it back in position with the
help of reference balls.

• L1.2: Removing lens mount, loosening the lens retaining ring, tightening it back in posi-
tion, and placing the mount back in position with the help of reference balls.

Mirror mount 1 (M1):

• M1.1: Removing the optomechanical mount M1 only and placing it back in position with
the help of reference balls.

Mirror mount 2 (M2):

• M2.1: Removing the optomechanical mount M2 only and placing it back in position with
the help of reference balls.

Lens mount 2 (L2):

• L2.1: Removing the optomechanical mount L2 only and placing it back in position with
the help of reference balls.

• L2.2: The lens tube is removed and reassembled back in position
• L2.3: The lens tube and lens retaining ring are removed and reassembled back in position

In addition to the lens self-centering functions already discussed in Sec. 4, the lens tubes are
also designed to be self-centered when inserted in other mounts of the family, or in a tube to tube
configuration. Tests on lens mount 2 are aimed to confirming the combined repeatability of lens
and tube’s self-centering. These cases represent typical conditions in the laboratory where it is
required to remove a mount or a component to access a hard to reach component nearby or to
require inspection or cleaning.

The centroid computation is done at 1/10’th of pixel in resolution and the system jitter was
measured at ∼� 1∕2 pixel. The beam centroid movement noted at the camera can be configured
to different translation or angle scaling factors depending if it is a lens or a mirror and according
to the focal lens ratio. Therefore, for each optical element, its specific movement can be related to
beam centroid translation on the sensor:

EQ-TARGET;temp:intralink-;e020;116;259δSensor ¼ PixP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔCEN2

X þ ΔCEN2
Y;

q
(20)

EQ-TARGET;temp:intralink-;e021;116;207δSenX ¼ PixP · ΔCENX; (21)

EQ-TARGET;temp:intralink-;e022;116;185δSenY ¼ PixP · ΔCENY; (22)

EQ-TARGET;temp:intralink-;e023;116;163ΔL1 ¼ δSensor ·

�
FL1

FL2

�
; (23)

EQ-TARGET;temp:intralink-;e024;116;128ΔL2 ¼ δSensor; (24)

EQ-TARGET;temp:intralink-;e025;116;106θX ¼ 1

2
tan−1

�
−δSenX
FL2

�
; (25)
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EQ-TARGET;temp:intralink-;e026;116;735θY ¼ 1

2
tan−1

�
δSenY

cos π
4
· FL2

�
; (26)

where

• δSensor is the centroid deviation measured at the sensor,
• PixP is the pixel pitch (5.3 μm).
• ΔCENX is the pixel count of the centroid deviation on the sensor in X.
• ΔCENY is the pixel count of the centroid deviation on the sensor in Y.
• δSenX is δSensor component of the measured displacement in the X direction.
• δSenY is δSensor component of the measured displacement in the Y direction.
• ΔL1 is the first lens deviation in X or Y (optic fiber side).
• L1- is the first lens conversion factor (optic fiber side).
• FL1 is the first lens focal length (50 mm).
• FL2 is the second lens focal length (250 mm).
• ΔL2 is the second lens deviation in X or Y (camera side).
• θX is the angular deviation of a mirror about the X axis.
• θY is the angular deviation of a mirror about the Y axis.

Lateral translations of the mirrors about the X and Y axis (parallel to the mirror plane) do not
affect the beam position on the sensor unless the displacement is wide enough to create beam
clipping, which should not occur for small displacements. Z axis translations of the mirrors
(normal to the mirror plane) create a translation of the optical axis but do not affect beam position
on the sensor for small displacements and can also be neglected if no beam clipping occurs.
Thus, for mirror mounts, only angular deviations will be noticeable in this experiment.
Small angular deviations of the lens mounts, or of the lens in relation to its mount, will produce
effects similar to the lens translation in the X and Y axis (normal to the optical axis) and will be
undistinguishable from the lens mount translations at the detector level. Lens mount translations
about the Z axis (parallel to the optical axis) create defocus at the detector level, which would
affect the spot size on the detector and should not affect the centroid position unless the spot
shape on the detector is also altered. This is not expected to occur for small translations. For this
reason, only translations are considered for the lens mounts in the experiment, but the measured
translation can either be the result of a translation or an angular movement of the lens or a com-
bination of both. The measured lens position deviation can be converted to an equivalent lens
surface tilt (θ) if needed, using Eq. (27):

EQ-TARGET;temp:intralink-;e027;116;299θ ¼ sin−1
�

ΔLi

RoCi

�
; (27)

where the ΔLi is ΔL1 or ΔL2 and RoCi is the optical surface radius in contact with the lens
mount seat of lens 1 or 2. In this case, the radius of doublet lens 1 (surface 1) is 34.53 mm and the
radius of lens 2 is 228.73 mm.

The Eqs. (20)–(26) can be simplified to extract a fixed conversion factor for each optical
element as shown in Table 3.

It can be noted that mirror horizontal and vertical angular motions have different scaling
factors. This is related to the mirror mounts being placed at 45 deg with respect to the incoming
beam in one axis and at 90 deg in the other direction. The mechanical angle deviation of the
mount is doubled at the camera along the sensor horizontal axis but is multiplied by

ffiffiffi
2

p
in the

sensor vertical axis. It should also be noted that an angular motion of M1 or M2 mirror along
their axis parallel to the breadboard horizontal plane produces a coupled deviation at the camera
in X and Y. An optical modeled representing the experiment bench (Fig. 9) was generated using
OpticStudio software13 and utilized to calculate this effect. As shown in Fig. 10, an angular
deviation of ∼0.2 deg about M2 X axis will cause a beam motion at the sensor of ∼1.2 mm

in Y (vertical) but only ∼3 μm in X (horizontal). Hence, the coupling effect is small and is
neglected in the analysis.
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5 Experiment 4: Environmental Stability

To extend the usefulness of breadboard optical assemblies, in addition to the position accuracy
and repeatability improvements, the mechanical stability under changing environmental condi-
tions is also an important aspect that was considered in the optomechanical mount design. It
should be worth that such high accuracy mounts may withstand shipping standards. A vibration
and thermal test campaign were performed with the breadboard optical assembly to verify its
capacity to survive severe environmental conditions.

In these experiments, an optical assembly comparable to that of the optical repeatability test
is used. However, in this case, the collimated beam between the two lenses is folded five times to
increase the sensitivity of the assembly to misalignment, as shown in Fig. 11. The lens combi-
nation used for the test is different to allow more space for the folding mirrors: the second lens is
a shorter FL of 100 mm lens instead of the 250 mm FL of the experiment 3. The conversion
factors based on Eqs 18–21 of the experiment are listed in Table 4:

The breadboard assembly is cycled seven times fromþ25°C toþ65°C and one time at −46°C
for 24 h as shown in Fig. 12, without any shipping packaging, in accordance with MIL-STD-
810H standard, using method 501.7 and 502.7 – Procedure I.9

The optical bench assembly was used without the shipping box for the thermal cycling. This
is considered a worst-case scenario since packaging acts as a thermal insulator, which increases

Fig. 9 Experiment 3 optical layout with optical element and axes definition.

Fig. 10 Sensor plane centroid position in (a) X and (b) Y versus M2 tilting angle in local X axis
orientation. Refer to Fig. 9 for local axes definition.
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the time needed to reach thermal equilibrium and can possibly reducing the total excursion range
viewed by the optical system in short duration exposition to extreme temperatures.

For the vibration campaign a general random vibration minimum integrity exposure (Fig. 13)
as per MIL-STD-810H method 514.89 of 7.7 Grms, 20 to 2000 Hz, 1 h per axis, was selected.

For the purpose of the vibration test, a 1.6-mm-thick sheet metal plate was mounted on the
five 12.5-mm lab posts shown in Fig. 11 to serve as an emulated top cover. The assembly was
then wrapped with two layers of 12.7-mm-thick polyethylene air bubble sheets. The wrapped
assembly was then placed centered in an evenly distributed 50-mm-thick layer of styrofoam
nuggets inside cardboard box. The fibered laser source was disconnected from the lab setup
for the packaging, and it was noted that it introduces a centroid jitter of about �3 pixels in the
measurements.

6 Experimental Results

The results of the four experiments are summarized in Tables 5–7. It is important to note that the
coordinate systems defined in the CMM probing experiments (experiment 1 and 2) are different
than the ones defined in optical repeatability test experiments (experiment 3 and 4). Axes def-
inition for the CMM experiments (1 and 2) do not share the same origin but do share similar axes

Fig. 11 Experiment 4 environmental stability test setup.

Fig. 12 Experiment 4 thermal cycles profile.

Grenier et al.: Methods to achieve fast, accurate, and mechanically robust optical breadboard alignment

Optical Engineering 051213-16 May 2021 • Vol. 60(5)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 30 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



orientations. However, experiment 3 and 4 share the same coordinate system philosophy: Z axis
follows the optical path. Therefore, results from CMM probing and optical validations cannot be
compared directly axis to axis.

6.1 Results Experiment 1 and 2

For the CMM probing experiments the, the coordinate system is fixed and aligned with the
breadboard hole grid as defined in Figs. 6 and 7. The results of the Table 5—Experiment 1 and
2 CMM probing results displays the accuracy and repeatability measured in individual axis.

Table 3 Experiment 3 conversion factors.

Optical element

Conversion factor

X (horizontal) Y (vertical)

L1 1.06 μm∕pixel 1.06 μm∕pixel

L2 5.3 μm∕pixel 5.3 μm∕pixel

M1 10.6 μrad∕pixel 14.99 μrad∕pixel

M2 10.6 μrad∕pixel 14.99 μrad∕pixel

Table 4 Experiment 4 conversion factors.

Description

Conversion factor

X (horizontal) Y (vertical)

L1 2.5 μm∕pixel 2.5 μm∕pixel

L2 5.3 μm∕pixel 5.3 μm∕pixel

M1 to M5 26.5 μrad∕pixel 37.5 μrad∕pixel

Fig. 13 Experiment 4 random acceleration profiled used in the vibration test.9
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Table 5 Experiment 1 and 2 CMM probing results.

Test Direction MIN MAX
2σ

Deviation
Measurement
Uncertainty

# of
samples

Experiment 1
reference
sphere and
breadboarda

Position Accuracy
(AccP ðx; yÞ)

X −25 μm 39 μm 33 μm �5 μm 72

Y −9 μm 20 μm 13 μm �5 μm 72

Position Repeatability
(RPi ðx; yÞ)

X — — 3 μm �5 μm 24

Y — — 2 μm �5 μm 24

Experiment 2
Optomechanical
mount

Position Accuracy
(AccP ðx; ; zÞ)

X −31 μm −2 μm 20 μm �5 μm 22

Y 0 μm 33 μm 28 μm �5 μm 22

Z 0 μm 58 μm 47 μm �5 μm 22

Position Repeatability
(RPi ðx; y; zÞ)

X — — 2 μm �5 μm 22

Y — — 2 μm �5 μm 22

Z — — 1 μm �5 μm 22

Angular Accuracy
(AccOðθV ; θH ; θLÞ)

XZ
plane (θV )

−541 μrad −297 μrad 159 μrad — 22

XY
plane (θH )

−35 μrad 122 μrad 82 μrad — 22

Angular Repeatability
(ARi ðθV ; θH Þ)

XZ
plane (θV )

— — 47 μrad — 22

XY
plane (θH )

— — 48 μrad — 22

aBased on reference ball position measurements over a surface of 15 × 225 mm2 on four different breadboards
200 × 400 mm.

Table 6 Experiment 3 optical repeatability results.

Description

Minimum Maximum 2σ deviation

Measurement
uncertainties

# of
samplesX Y X Y X Y

L1 mount only
(L1.1)

−0.4 μm 0 μm 0.3 μm 0.7 μm 0.6 μm 0.7 μm �0.5 μm 5

L1 mount and lens
ring loosen (L1.2)

−2.5 μm −0.2 μm 3.7 μm 1.4 μm 4.8 μm 1.3 μm �0.5 μm 5

M1 mount (M1.1) 0 μrad 0 μrad 6.7 μrad 5 μrad 5.5 μrad 4 μrad Y∶� 5.3 μrad 5
X∶� 7.5 μrad

M2 mount (M2.1) −33.1 μrad −15.5 μrad 0 μrad 0 μrad 25.7 μrad 11.9 μrad Y∶� 5.3 μrad 5
X∶� 7.5 μrad

L2 mount only
(L2.1)

0.1 μm −6.5 μm 8.9 μm 3.9 μm 7.2 μm 7.9 μm �2.6 μm 5

L2 lens tube only
(L2.2)

−2.8 μm −1 μm −0.2 μm 4.6 μm 2.1 μm 5.3 μm �2.6 μm 5

L2 lens tube and
lens loosen (L2.3)

0.2 μm −4.3 μm 3.8 μm 6.4 μm 3 μm 8.1 μm �2.6 μm 5
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From the results of experiment 1, it is possible to see that the position accuracy (Acc2D) for
the reference sphere’s position is about 35 μm at 2σ. From experiment 2, the results show that it
is possible to achieve precise positioning of an optomechanical mount over the tested surface
with values under 66 μm and 180 μrad at 2σ (Acc3D) with respect to its theoretical position. The
position repeatability measured is very low throughout the experiment at an average �2 μm at
2σ, which is below the CMM absolute uncertainty. The CMM error envelope is within �5 μm at
2σ over the measurement envelope. Therefore, the optomechanical mount repeatability cannot be
ruled better than the CMM absolute error in these experiments. Although, even if it seems prob-
able that the repeatability is better than the CMM’s uncertainty of 5 μm, it will be assumed to be
�5 μm. It is assumed that the use of automated CMM probing is significant in the high repeat-
ability monitored, by consistently probing the same regions of the optomechanical mounts there-
fore reducing the effect of surface irregularities. The angular accuracy measured in the vertical
plane is <160 μrad (33 arc sec) at 2σ. This is slightly higher than the one measured in the hori-
zontal plane of 82 μrad. This was expected since the distance between the points of contact of the
reference balls on optomechanical mount in the horizontal axis is longer than the depth of the
optomechanical mount in the perpendicular axis. A small deviation at the mount interface with
the breadboard as a greater effect in the vertical axis than a similar deviation in the horizon-
tal axis.

6.2 Results Experiment 3 Optical Repeatability

The experiment 3 results are displayed in Table 6. The axis definition of this experience the axis
to be at the optical element as shown in Fig. 9 and the values should be interpreted as the optical
element displacement or rotation.

The magnitude of displacement measured in the optical repeatability test in the XY plane
(perpendicular to the optical axis) is 8.6 μm at 2σ for experiment (L2.1) and 10.7 μm for experi-
ment (L2.3). Considering the number of contact interfaces involved in each of this experiment
sub steps, the results seems close to the �5 μm repeatability per interface noted in experiment 2.
It can also be noted that the two mirror mounts have slightly different behaviors, M1 at magni-
tude of 6.8 μrad appears to be more than two times more stable than M2 at 28.3 μrad. This is in
accordance with the theory since M2 is an adjustable mount that is heavier and has more inter-
faces than M1, which is a fixed mount. However, it should be noted that throughout the experi-
ment the deviations monitored were close to the centroid total jitter/uncertainty of the optical
setup that was noted in the lab and no signal averaging was done. For this reason, the repeat-
ability should not be considered better than�1∕2 pixel, which would mean at least�0.5 μm for
the 50-mm lens, �2.6 μm for the 250-mm lens, �5.3 μrad (Y axis tilt), and �7.5 μrad (X axis
tilt) for the mirrors. The sampling is five trials per subtest step for a total of 35 measurements

Comparing to the standard lab post visual alignment case discussed in introduction, the
results of experiment 1, 2, and 3 suggest that the combination of the edge centering technique
with the breadboard’s conical reference features and spheres technique in this line of bread-
boards and optomechanical mounts have the potential to improve position accuracy of an optical
element by a factor of 10. It could still be required to use adjustable mounts if the alignment is
required to be lower than 50 μm∕179 μrad and to compensate for components that do not pos-
sess reference features, but in most cases, the number of adjustable mounts can be reduced thus
possibly reducing total alignment time.

Table 7 Environmental stability results in experiment 4.

Test description

Deviation (px) Deviation (μm)

Uncertainty
(μm)

Amplitude
(μm)X Y X Y

Thermal cycling 1 −1 5.3 −5.3 �2.6 7.5

Random vibration −3 3 15.9 15.9 �15.9 22.5
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6.3 Results Experiment 4

After the vibration campaign, the beam centroid was compared to the initial value and a total
displacement amplitude of 4.2 pixels or 22.5 μm of the centroid was observed as shown in
Table 7 and no physical damage was noted. Based on conversions factors of Table 4, it could
be assumed to be either a single mirror mount movement of 79.5 μrad in horizontal and
112.5 μrad in vertical or, more likely, a distributed movement over multiple mirrors for an aver-
age of 16 μrad∕mirror and 22.5 μrad∕mirror in each axis. Considering the small lateral play
present around the 25.4-mm diameter mirrors used and the mirror clamping method, a small
sliding of the mirror with respect to the optomechanical mount interface can produce a similar
angular deviation due to surface roughness. In example, assuming the mirror mounting pads are
17.5 mm apart, a small surface irregularity of 0.35 μm is sufficient to produce a 20 μrad mirror
deviation. In this case, the movement is assumed to be related to the mirrors since the clamping
method of mirrors may allow some sliding to occur at the mirror/mount interface whereas a lens/
ring combination is less likely to produce large displacements. If the same movement is to be
related to a lens decenter, then it would either be a displacement of 22 μm of Lens #2 or 10.5 μm
for lens #1. However, this is assumed unlikely since the optical repeatability test results showed
better repeatability values than 10 μm in all cases. This would imply that a ring would have
loosen, yet visual inspection of the test specimens made after the test did not show any loose
component. Once again, it should be noted that the measured values are of the same amplitude
than the uncertainty of the test setup. For many applications this would be considered small
movements confirming that the technology is suitable to survive shipping conditions.

7 Conclusions

This paper presented a method to passively align optomechanical assemblies by uniting edge
contact mounting techniques with a new patent pending optomechanical mount referencing tech-
nique, consisting of inserting reference spheres in a laboratory breadboard configuration. The
operation principle of the sphere referencing method mount was presented and some of the
advantages of this positioning technique in regard of the position accuracy were presented with
respect to the locating pin method along with a brief overview of the self-centering capabilities of
the edge contact mounting technique. Optomechanical mounts position and angular accuracy
aspects were discussed and some of the typical error sources were quantified. The line of opto-
mechanical mounts design driving factors to improve mechanical robustness were discussed in
regard of the environmental conditions expected to occur in shipping. The position accuracy,
repeatability, and mechanical robustness were demonstrated by two direct CMM probing experi-
ments and two indirect optical experiments. The position repeatability measured for the refer-
ence sphere’s positioning method, the edge contact mounting and with the optomechanical
mount abutment on reference spheres were measured to be about �5 μm per interface. The
results show that it is possible to achieve position accuracies under than 50 μm at 2σ in two
dimensions, or under 66 μm and 180 μrad at 2σ in 3D (Acc3D), at the optomechanical mount
level for small transportable optomechanical assemblies. In comparison, to the laboratory post
visual alignment case, the results suggest that the presented line of optomechanical mount and
breadboards can improve by a factor of 10 the initial positioning of optical elements. The
mechanical robustness of a typical breadboard level optical system was also demonstrated for
temperature range from þ65°C down to −46°C and at vibration ranges typical of that what
should be encountered for worldwide shipping. The line of optomechanical mounts and
breadboards developed with these methods, named QuickPOZ, opens the possibility to expand
usage of laboratory setups to small productions due to reduced alignment time and built-in
robustness.
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