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ABSTRACT 
 
In the context of outdoor video surveillance, this paper 
attempts to answer the following question: how to combine 
LWIR and color information in order to optimize 
foreground / background segmentation accuracy. Starting 
from an improved state-of-the-art color-based approach, we 
integrated thermal information into the algorithm with a 
pixel-level analytical fusion technique. Considering that 
very few public thermal / color video databases are 
available, we built our own acquisition platforms to grab 
numerous co-registered LWIR / color videos in a variety of 
outdoor conditions. We manually generated the pixel-based 
ground-truth for a representative selection of these 
sequences and performed a quantitative performance 
analysis. We demonstrated, among others, that the 
combination of thermal and color information proposed 
outperformed the use of a single spectral band in all tested 
visibility conditions. 
 

Index Terms— Sensor fusion, change detection 
algorithms, outdoor video surveillance, thermal imaging, 
object tracking.  
 

1. INTRODUCTION 
 
Performing accurate and real-time automatic detection and 
tracking of human and vehicles in outdoor environment is 
very challenging, especially because of dynamic 
background, lighting changes and climate factors. 
Combining thermal and color information is not trivial since 
the contrast between objects of interest and background 
strongly varies over time in both sensors. To develop a 
surveillance system efficient toward most conditions, the 
fusion algorithm must make the most of one sensor 
strengths without being affected by weaknesses of the other. 

Thermal and visible information may be combined at 
pixel-level or at object-level. In the latter, extraction of 
objects of interest is performed independently on each 
modality and association / fusion rules are applied on the 
output. In the method proposed by Snidaro et al. [6], a 
confidence measure based on contrast of detected thermal 
and visible foreground blobs is used to weight the 
contribution of each sensor. Hence, the position of a blob 
with a good contrast relatively to the background will have a 

larger impact on the fused predicted position of the track. A 
main drawback of object-level fusion is that 
correspondences between thermal and visible detections 
must be resolved   

Approaches combining information at pixel-level can be 
separated into two classes: representative and analytical fusion. 
Image fusion is the expression commonly used to describe 
representative fusion. Generally, its purpose is to generate a 
new image more informative or intuitive for a human 
observer. Waxman et al. [12] proposed to use such fused 
images as input for automated detection and tracking. But it is 
important to understand that the generation of a new image 
is not required for automated video monitoring applications. 
For this reason, analytical fusion, which could be defined as 
the combination of available information from sensors for a 
more robust analysis and interpretation of video content, 
seems more suitable for automated video monitoring 
applications.  

Most motion-based approaches (temporal subtraction, 
background subtraction, optical flow) are valid for both 
thermal and visible images. For applications where the 
acquisition unit is fixed, background subtraction methods 
are almost always used as a first stage of foreground / 
background classification. Ó Conaire et al. [3] proposed to 
model the color background with a mixture of Gaussians, 
and the thermal background with a single distribution. A 
global threshold is used for thermal detection, and its value 
is adjusted to maximize the similarity between visible and 
thermal detections. Pixels classified as foreground in each 
band are combined with a logical “or”.  Finally, foreground 
blobs not containing at least one pixel detected from thermal 
and from visible images are eliminated, thus potentially 
leading to miss detections when the contrast observed by 
one sensor is very low. 

 
2. OVERVIEW OF THE PROPOSED METHOD 

 
To maximize foreground / background segmentation 
accuracy, our opinion is that thermal and visible information 
must be combined at the lowest processing level: the pixel. 
The method presented in this paper may be categorized as a 
pixel-level analytical fusion technique.  

Like in our preliminary work [8], the non-parametric 
codebook model proposed by Kim et al. [1] is used as 



 

 

starting point for background modelling. But before 
integrating thermal information in the codebook model, we 
meticulously optimized the color-based detection method of 
[1] for outdoor environment [10].    

To combine information at pixel-level, temporal and spatial 
registration of both sensors is required. In [8], an acquisition 
platform with a beamsplitter (to superpose optical axis) was 
used to grab a few registered low resolution image sequences. 
Cumbersome and limited to narrow field of view, we replaced 
this unit by a side-by-side camera configuration integrated in 
a rugged housing [9]. Spatial alignment of images grabbed 
with a side-by-side camera configuration can be performed by 
affine homography transformation where the projection 
matrix H is determined from pairs of corresponding features 
like in the work of Torabi et al.[11]. But for a more accurate 
registration, we developed an in-lab internal / external 
calibration-based procedure [9].  

 
3. HYBRID CODEBOOK 

 
Instead of modeling thermal and color background 
independently, we propose to combine data from both 
sensors in a single hybrid codebook in which every pixel is 
represented by L codewords (CW): 

 { }1... , , , , , , ,k L k k k k k k k kCW Y Co Cg T f p q MNRL= =  (1) 

where , ,k k kY Co Cg  and kT  are luma, chroma orange, 
chroma green1 and thermal values of CW k.  Parameters f, p 
and q are respectively the number of matches, the time 
stamp of the first match, and the time stamp of the last 
match. MNRL (Maximum Negative Run-Length) stores the 
length of the period (in number of frames) during which a 
CW has not been matched. A threshold on MNRL is used to 
filter out CW belonging to moving objects.  

At every new frame, every pixel is associated to the first 
sufficiently similar CW. If no codeword can be matched, a 
new one is created and added in a cache codebook.  
Codewords from the cache are promoted to permanent 
background codebook when they are repetitively matched, 
and codewords from permanent background codebook not 
matched since a long period of time are deleted.   

The diagram of Fig. 1 presents the association rules used 
to match a pixel value with a background CW k. The first 
condition tests the thermal variation against a global 
detection threshold ε , while the formula written in the 
second diamond tests if the color pixel value is enclosed in a 
spherical association volume. If this last condition is not 
fulfilled, we verify if the observed value is enclosed in the 
cylindrical association volume corresponding to cast shadow 
pixels as proposed in [10]. Because of space constraints, 
please refer to [10] for full description of parameters related 
to color information (second and third diamonds of Fig. 1). 

 

                                                 
1 For more details on the YCoCg color space, please refer to [10]. 

3.1. Semi-automatic tuning of thermal threshold ε 
 

Adjusting the thermal detection threshold in time is 
particularly important for outdoor scenes because thermal 
contrast is significantly reduced in presence of rain and 
wind. In this situation, increasing the camera gain is a 
common practice, leading to much noisier images. 
Moreover, most thermal sensors suffer from sudden 
intensity changes, either caused by AGC compensation 
when a large highly contrasted object enters in the field of 
view, or after periodic flat field correction, which is typical 
to uncooled microbolometers sensors.   

To maximize detection accuracy, we propose to update 
the thermal detection threshold ε  at every frame t based on a 
periodically updated standard deviation σ   (temporal sensor 
noise), and on a weighted decay of the intensity variation ∆T 
measured on previous consecutive thermal frames: 

( ) ( )max 0, ˆmin 1,  t MIN
t MIN t MAX MIN

MAX MIN

T
σ σ

ε ε κ ε ε
σ σ

− 
= + + ⋅ ∆ ⋅ − − 

 (2) 

Parameters ε MIN, ε MAX, σ MIN and σ MAX must be determined by 
the user and correspond to the minimum and maximum 
allowed detection threshold and sensor noise. κ is a 
normalizing coefficient used to weight the contribution of 
the sudden intensity variations. We set κ to 10 for all our 
experiments. 

Having to set the value of four parameters to adjust a 
single threshold might seem not justified. But throughout 
more than two years of interaction with an industrial partner 
using the algorithm, we found that the eq. (2) allows the 
user to optimize accurately and intuitively the desired 
detection rate for every application and installation. 

 
  
 

 
Fig. 1. Flow diagram of the proposed foreground / 
background / cast shadow classification. 



 

 

4. QUANTITATIVE PERFORMANCE ANALYSIS 
 
Measuring the performance of a background / foreground 
segmentation algorithm is not a trivial task. Several factors 
may limit the validity of the results: limited quantity and 
quality of benchmark sequences, inappropriate performance 
metrics, type of post-processing applied on the detection 
mask, and non-optimal adjustment of parameters of 
compared algorithms. In this quantitative performance 
analysis, a special attention has been addressed to each of 
these factors. 

For more than two years, we extensively tested and 
analysed the behavior of the proposed algorithm on a huge 
amount of data. In this section, we present and discuss the 
results obtained on four sequences grabbed in our parking 
lot. These co-registered LWIR / color videos are listed in 
Table 1 and illustrated in Fig. 2. Note that to enhance 
details, we only display a sub-area of the whole frames. 
These image sequences with their ground-truth were made 
publicly available (with many others coregistered thermal-
color videos) at www.ino.ca/Video-Analytics-Dataset. 

Table 1. Selected videos with ground truth at pixel-level. 

Sequence Frames Resolution 
 [pixels] 

Frames  
with GT Compression 

ClosePerson (CP) 240 512x184 20 MPEG4 
MultipleDeposit (MD) 2400 448x324 15  MPEG4 

GroupFight (GF) 1482 452x332 22 MPEG4 
ParkingSnow (PS) 2941 448x324 21 MPEG4 

 
Conditions expressed in diagram of Fig. 1 give a 

preliminary detection mask in which every pixel is classified 
as background, foreground or shadow. Such preliminary 
detection masks, with cast shadow pixels printed in gray, are 
illustrated by columns 3 and 5 of Fig. 2. Typically, some 
filtering is performed on these masks to remove noise prior 
to the blob labeling process. Columns 4 and 6 illustrate the 
enhanced detection masks obtained at the output of these 
filtering and blob labeling processes. Exactly the same 
cascade of operations is applied for every algorithm 
compared in Table 2. These operations consist in spatial 
filtering of candidate shadow pixels, morphological closure 
and blob labeling. We also integrated elimination of too 
small blobs and filling of holes (pixels printed in light gray 
in the columns 4 and 6 of Fig. 2) in the blob labeling 
process. 

Thanks to the ground truth at pixel-level, the number of 
true positives (TP), false positives (FP) and false negatives 
(FN) may be determined for every algorithm and every 
video. Among existing metrics, we chose the Jaccard 
coefficient (J) used by Rosin and Ioannidis [4]: 

( )
TPJ

TP FP FN
=

+ +
 (3) 

To present a more complete comparative study, we also 
report the detection rate and the false alarm rate: 

TPDR
TP FN

=
+

        FPFAR TP FP=
+

 (4) 

We present in Table 2 the results of our quantitative 
performance analysis for the four selected sequences and 
four different algorithms. For every algorithm, detection 
thresholds have been set to maximize the Jaccard 
coefficient. The optimization procedure used was an 
exhaustive search, and we performed it independently for 
every sequence. We choose to use a set of optimized 
parameters for every video instead of a unique set of 
parameters for all sequences to simulate more closely the 
fact that detection thresholds of a continuously operating 
system will be automatically adjusted in time based on 
illumination and scene conditions.  

Table 2. Foreground detection accuracy, quantitative 
results. 

Seq. Metric Thermal 
only 

Color  
only 

Hybrid 
combined 

Hybrid 
independent 

CP 
DR 

FAR 
J 

0.863 
0.161 

0.7405 

0.779 
0.185 
0.6624 

0.898 
0.123 

0.7974 

0.898 
0.123 
0.7978 

MD 
DR 

FAR 
J 

0.728 
0.207 

0.6113 

0.540 
0.145 
0.4945 

0.845 
0.211 

0.6892 

0.849 
0.225 
0.6805 

GF 
DR 

FAR 
J 

0.946 
0.203 

0.7620 

0.661 
0.206 
0.5639 

0.935 
0.097 

0.8500 

0.944 
0.104 
0.8503 

PS 
DR 

FAR 
J 

0.887 
0.077 

0.8255 

0.849 
0.083 
0.7888 

0.947 
0.059 

0.8942 

0.950 
0.061 
0.8950 

 
4.1. Hybrid vs single sensor 

 

A first remark is that the proposed combination of thermal 
and color data leads to a more accurate detection (higher 
Jaccard coefficient) for all image sequences. 

We can also note that the thermal only algorithm gives 
better results than the color only version, especially for 
videos CP, MD and GF. In these three sequences, the 
presence of dark cast shadows contributes to reduce the DR 
and increase the FAR of the color only algorithm.  
 
4.2. Combined vs independent codebook 
 

Thermal and color information may be combined into a 
single codeword as proposed by eq. (1). The thermal and 
color background may also be modeled into two 
independent codebooks. The performances measured with 
these two alternatives are very similar. A significant 
difference is only obtained on sequence MD (0.6892 vs 
0.6805), which is the video with the more dynamic 
background (oscillating trees). With combined CW, a 
change has only to be detected on either the thermal or the 
color image to avoid updating the background model with a 
new observation. The use of combined CW is thus less 
prone to errors than the use of independent CW with such 
dynamic background. 

http://www.ino.ca/Video-Analytics-Dataset


 

 

4.3. Memory and processing time 
 

For every video, we report in Table 3 the mean processing 
time per frame (including filtering and blob labeling 
processes) in detection mode (initialization mode requires a 
shorter processing time). Two interesting observations must 
be reported.  First, the combined codebook is 14.3% faster 
than the independent in average. The redundancy of some 
operations with independent CW explained this difference.  
Second, the proposed combined algorithm is 32.3% faster, 
in average, than the summation of thermal and color only. 

Table 3. Mean processing time per frame in ms.  

Seq. Thermal 
only 

Color  
only 

Hybrid 
combined 

Hybrid 
independent 

CP 4.64 8.22 9.73 11.16 
MD 6.67 11.34 13.61 15.71 
GF 6.16 10.57 12.13 13.74 
PS 5.99 9.96 11.83 13.57 

  
In terms of memory requirement, the proposed combined 

codebook requires, in average, 30.5% less memory than 
with independent codebooks, and 51.4% less memory than 
the summation of thermal and color only codebooks. This 

difference is another argument in favour of using a fusion 
technique at pixel-level rather than at object-level. For this 
analysis, we limited the permanent background codebook to 
a maximum of five codewords per pixel. 
 

5. CONCLUSION 
 
It is now accepted that thermal imaging is more suitable 
than electro-optical sensor for moving object detection and 
tracking in low-light conditions. However, during day time, 
when illumination allows contrasted color images, it is not 
obvious that the combination of thermal and visible 
information will lead to better results because the addition 
of weaknesses of both sensors can degrade performances. 
We demonstrated by the quantitative analysis of section 4 
that the proposed fusion method improves the robustness of 
moving objects extraction in all tested scenarios. 

The proposed detection technique, which combines 
thermal and color information at pixel-level, is suitable for 
real-time applications. It currently exploits only spectral 
information, but texture, gradient or spatial constraints could 
be added to improve segmentation accuracy. 
 

 

Frame Ground truth 

Preliminary  
detection mask 

- Color only (top) 
- IR only (bottom) 

Enhanced  
detection mask 

- Color only (top) 
- IR only (bottom) 

Preliminary  
detection mask 

- Hybrid codebook 

Enhanced  
detection mask 

- Hybrid codebook 

CP 

MD 

GF 

PS 

Fig. 2. Examples of preliminary detection masks and enhanced detection masks obtained with every algorithm. 
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