

OPTICAL MEASUREMENTS

In order to stay on the technological cutting edge, INO renews and increases its very large equipment park every year for providing you the best optical engineering service in North America. Also, we provide optical testing and environmental testing for components or system.

- High precision fabrication and alignment
- IR and visible spectrum MTF measurements
- Interferometry and wavefront measurements
- Spectrophotometry, colorimetry, radiometry, photometry, and microscopy

OPTICAL MEASUREMENTS : LIST OF AVAILABLE SERVICES

SPECTRAL MEASUREMENTS

- Characterization of the behavior of various materials as a function of wavelength (glass, plastics, metals, mirrors, anti-reflection coatings, interferential filters, fabrics, lotions, etc.)
- Direct or diffuse transmission
- Specular reflection (at normal incidence or at an angle)
- Diffuse reflection
- Wavelengths in the ultraviolet, visible, and infrared spectra
- Spectrofluorometry
- Fiber spectral characteristics

LUMINANCE AND CONTRAST

- Measurement of luminance
- Characterization of LED display panel contrast based on background luminance and display luminance measurements

EMISSION SPECTRUM OF LIGHT SOURCES

- Characterization of a source relative intensity as a function of wavelength
- Incandescent sources, LED, fluorescent tubes, laser, etc.
- Wavelengths from the UV to the near-IR spectrum (200-1100 nm)

COLORIMETRY

- Quantification of the color of an object or surface by contact
- Results expressed in Yxy or L*a*b* color systems
- Possibility of differential measurements in relation to a benchmark
- Characterization of the color of various objects (plastics, fabrics, paints, foods, etc.)
 - Characterization of the color of a light source or a distant object

LUMINOUS INTENSITY AND ILLUMINANCE

- Characterization of the luminous intensity of a source based on an illuminance measurement taken at a given distance
- Illuminance measurements (lamps, LEDs, etc.)
- Characterization of the angular distribution of the intensity of a light source

Possibility of photometric (based on human eye response) or radiometric (power) measurements

INTERFEROMETRY

- Variety of measurements using a Zygo[®] interferometer:
- Surface flatness (windows, mirrors, prisms)
- Surface accuracy (lenses, curved mirrors)
- Radius of curvature of an optical surface (lenses, curved mirrors)
- Transmitted wavefront error (TWE) (windows, lenses)
- Angle errors and quality of wavefront transmitted by a corner cube

WAVEFRONT MEASUREMENTS

- Wavefront sensor detects aberrations in optical components by measuring the shape of the transmitted or reflected wave front
- Useful to characterize the quality of optical surfaces, or to align components precisely by minimizing
 optical aberrations
- Three spectral bands available: visible to near-IR, MWIR, and LWIR

OPTICAL MEASUREMENTS : LIST OF AVAILABLE SERVICES

MTF (MODULATION TRANSFER FUNCTION) MEASUREMENT
 The visible spectrum
 Characterization of an optical system's effectiveness at resolving various levels of detail by measuring
the contrast obtained at various spatial frequencies
SURFACE MEASUREMENTS
 Interferometric 3Dmicroscope (LEXT, NPFLEX)
 DEKTAK surface profilometer
CHARACTERIZATION OF THIN FILMS
 Tencor (stress measurements)
 Ellipsometer
CHARACTERIZATION OF OPTICAL FIBERS
 Spectral attenuation
 Absorption
 Fiber index profile measurements (EXFONR9200)
 Fiber preform index profile measurements (PK2600) Birefringence measurements
 Birefringence measurements Cutoff wavelength
 Characterization and modeling of photodarkening in active fibers
PRECISION ANGLE MEASUREMENT
 Measurement of the deviation between two optical surfaces using an autocollimator or goniometer
 Characterization of the parallelism of a window or prismangle
LASER BEAM PROFILING
 Laser beam diagnostics using a CCD camera from ultraviolet to near infrared (i.e. 266–1300 nm) or a
slit-scan pyroelectric detector from ultraviolet to far infrared (i.e. 190 nm – 100 μ m)
 CW or pulsed laser beam analysis: diameter (1/e² and 4s), divergence, quality factor (M² and BPP),
astigmatism and asymmetry following the X/Y orthogonal axes
 Measurement method compliant with ISO11146-1:2005
PRECISION MEASUREMENT USING A MICROSCOPE
 Various types of microscopes available depending on the required resolution: optical microscopes,
scanning electron microscopes (SEM), or atomic force microscopes (AFM)
 Accurate measurements of component dimensions, images of particles measuring a few microns, surface measurements of component dimensions.
roughness characterization, etc.
INSPECTION OF OPTICAL COMPONENTS
 Diameter or dimensions
 Thickness (center or edges)
 Surface flatness or radii of curvature, focal length
 Surface quality (roughness, scratch & dig)
 And more
ALIGNMENT OF CUSTOM OPTICAL SYSTEMS
