INO has developed a number of hermetic vacuum packaging technologies for MEMS devices based on metallic and ceramic headers. Processes are performed in state-of-the-art semi-automated vacuum furnaces and systems that allow for activation of thin film getters. The ceramic LCC vacuum packaging technology can accommodate uncooled bolometric detectors and other MEMS devices that require a vacuum environment below 10 mTorr. For temperature-sensitive devices, a low temperature process can be used (<175°C). INO’s solid expertise in vacuum technology allows to adapt the vacuum sealing technology to specific device requirements. INO also offers short-series production and technology transfers.

APLICATIONS
• LWIR imagers and sensors
• Various MEMS devices such as:
 • Accelerometers
 • Resonators
 • Micromirrors

BENEFITS
• High productivity due to batch processing
• Low-cost
• Compact size
• Fluxless technology
• Compatible with temperature sensitive devices
• Flexibility in package geometry, window materials and solder alloys
• Integrated pressure sensors for cavity pressure monitoring

CERAMIC LCC PACKAGES

Ceramic LCC Package
68 pins

Ceramic LCC Package
116 pins
HERMETIC VACUUM PACKAGING

Ceramic LCC Packages

TYPICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>CERAMIC LCC 68</th>
<th>CERAMIC LCC 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>Leadless Chip Carrier (LCC)</td>
<td>Leadless Chip Carrier (LCC)</td>
</tr>
</tbody>
</table>
| Footprint | - External size: 24 x 24 mm
 | - Cavity size: 15.8 x 15.8 mm
 | - Cavity depth: 1.3 mm | - External size: 32.3 x 32.3 mm
 | - Cavity size: 23.2 x23.2 mm
 | - Cavity depth: 1.52 mm |
| Number of pins | 68 | 116 |
| Window | Germanium, Silicon and N-BK7 (Antireflection Coating on request) | (Antireflection coating on request) |
| Getter | SAES PaGeLid | |
| Pressure | <10 mTorr | |
| Max. process temperature | | 175°C or 285°C |
| Throughput | 12 packages/run | 9 packages/run |
| Hermeticity yield | > 90% | |
| Package reliability* | Shock: MIL-STD-810 method 516
 | Vibration: MIL-STD-810 method 516
 | Thermal cycling: MIL-STD-810 method 501
 | Temperature/humidity: GR-1209-CORE | In progress:
 | Shock: MIL-STD-810 method 516
 | Vibration: MIL-STD-810 method 516
 | Thermal cycling: MIL-STD-810 method 501
 | Temperature/humidity: GR-1209-CORE |

*175 °C bonding process reliability under progress