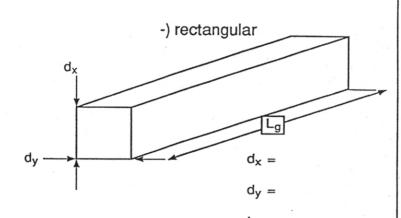
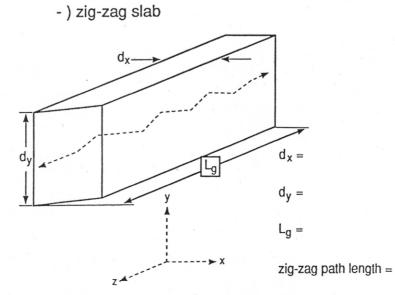
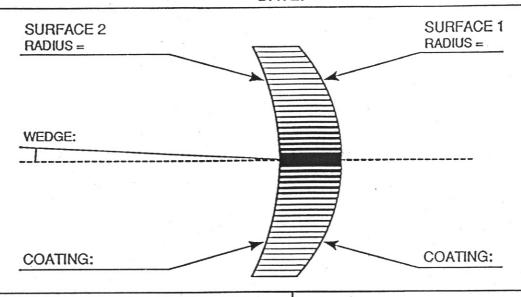

RESONATOR DESIGN DATE: REF. NO: GRM d R_1 R_2 **GAIN MEDIUM** PLEASE FILL IN THE FORM AS COMPLETELY AS POSSIBLE RESONATOR A-Optimum feedback (%): 1. Loss (other than coupling) on the coupling side of the resonator (%) (if applies): 2. Loss on the back side of the resonator (%) (if applies): 3. Index of refraction, path length and position (back side or coupling side) 4. of elements other than the gain medium (if applies): Current R_1 , R_2 (concave = +) (if applies): 5. Current L_c, L₂ (if applies): 6. Desired configuration (stable, unstable): 7. Desired cavity length L_c (min., max.): 8. Desired L2: 9. Flat-top near-field: necessary □ unnecessary 10. Property to be optimized (near-field, far-field, etc.): 11.


GRADED REFLECTIVITY MIRROR™ SPECIFICATIONS REF. NO: DATE: SURFACE 2 SURFACE 1 RADIUS = 4.22 m ccRADIUS = 4.22 m cxWEDGE: 1° COATING: AR COATING: GRADED **SUBSTRATE** COATING DIAMETER: 1 inch REFLECTIVITY PROFILE $R(p) = R_0 \exp (-(\rho/W_m)n)$ THICKNESS: 0.25 inch PARAMETERS MATERIAL: FUSED SILICA Ro = 80%Wm = 1.6 mmQUANTITY: n = 3.5WAVELENGTH OF UTILISATION: 1064 nm **ENERGY/POWER REGIME:** 2 J/cm^2 $\tau = 12 \text{ ns}$ (Specify J/cm² and τ_{p} for pulsed operation) NAME JOB TITLE _____DIVISION/DEPT COMPANY CITY ____ ZIP/POSTAL CODE ______COUNTRY____ TELEPHONE NO. ______FAX NO. _____


E-MAIL _____ WEB SITE ____

C-	OPERATING REGIME	
19.		
20.		
21.	Pump power/energy:	
22.		
23.		
24.		
NAME		
		DIVISION/DEPT
COMPANY		
CITY		
ZIP/POSTAL CODE		
TELEPHONE NO.		FAX NO
E-MAIL		

GRADED REFLECTIVITY MIRROR™ SPECIFICATIONS REF. NO: DATE: SURFACE 2 SURFACE 1 RADIUS = RADIUS = WEDGE: COATING: COATING: COATING SUBSTRATE DIAMETER: REFLECTIVITY PROFILE R(p) =THICKNESS: **PARAMETERS** MATERIAL: Ro = Wm = QUANTITY: WAVELENGTH OF UTILISATION: **ENERGY/POWER REGIME:** (Specify J/cm² and $\tau_{_{D}}$ for pulsed operation) NAME JOB TITLE DIVISION/DEPT COMPANY ADDRESS ZIP/POSTAL CODE _____COUNTRY ____ TELEPHONE NO. ______FAX NO. _____


_____ WEB SITE _____

E-MAIL

GRADED REFLECTIVITY MIRROR™ SPECIFICATIONS

REF. NO:

DATE:

SUBSTRATE

DIAMETER:

THICKNESS:

MATERIAL:

QUANTITY:

COATING

REFLECTIVITY PROFILE

R(p) =

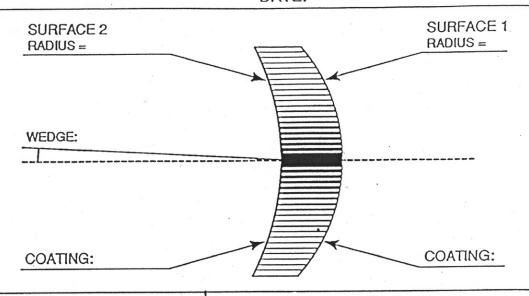
PARAMETERS

Ro =

Wm =

n=

WAVELENGTH OF UTILISATION:


ENERGY/POWER REGIME:

(Specify J/cm² and τ_0 for pulsed operation)

GRADED REFLECTIVITY MIRROR™ SPECIFICATIONS

REF. NO:

DATE:

SUBSTRATE

DIAMETER:

THICKNESS:

MATERIAL:

QUANTITY:

COATING

GRM REFLECTIVITY PROFILE

$$R(x,y) = R_o * Exp \left[-\left(\frac{x}{\omega_x}\right)^{n_x} \right] * Exp \left[-\left(\frac{y}{\omega_y}\right)^{n_y} \right] + R_s$$

$$S = \pm \% \quad R_s \le \%$$

 $R_o =$ $\omega_x =$

 $n_x =$

mm

 \pm

 \pm

 $R_S \leq$ $\omega_{v} =$

 $n_v =$

mm

WAVELENGTH OF UTILISATION:

ENERGY/POWER REGIME:

(Specify J/cm^2 and τ_o for pulsed operation)